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ABSTRACT 

The ability to determine the actual reaction mechanism (RM) of solid state processes from 
a single non-isothermal curve was analysed and discussed. Owing to the correlation of all 
kinetic parameters the RM cannot be ascertained without the knowledge of activation energy. 
However, if the activation energy is known a simple and precise method for the determina- 

tion of RM can be proposed. 
The method was used to analyse the experimental data of the thermal decomposition of 

magnesium carbonate in vacuum. It was found that the reaction follows the R3 mechanism 
which is in very good agreement with the results of isothermal experiments. 

INTRODUCTION 

Several attempts have been made to determine the mechanism of a solid 
state process from one non-isothermal trace. Many studies which have 
evaluated experimental data have employed reference theoretical curves that 
are often called ‘master plots’ [l-4]. The master plot in this sense is a 
characteristic curve independent of the condition of the measurement which 
is easily obtained from experimental data. 

In this paper we discuss the applicability of the master plots based on 
both the second and first derivatives of the reacted fraction a in a hypotheti- 
cal reaction. The application of the method to the decomposition kinetics of 
magnesium carbonate is shown and discussed. 

* Permanent address: Joint Laboratory of Solid State Chemistry of the Czechoslovak 
Academy of Sciences and Institute of Chemical Technology, 532 10 Pardubice, Czechoslo- 
vakia. 
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THEORETICAL 

Master plots based on the second derivative of (Y 

The reaction rate of a solid state process can be described by the 
well-known general kinetic law 

dar/dt = A eCXf( a) 

where x = E/RT and f(a) is an algebraic function 
mechanism of the process. If the temperature rises 
( p = dT/d t), eqn. (1) can be integrated and we obtain 

AE --x r(x) 
&)=PR e x 

[ 1 

depending on the 
at a constant rate 

It is known [5] that the function r(x) is an approximation of the tempera- 
ture integral which cannot be expressed in a simple analytical form. In this 
study we used the fourth rational expression of Senum and Yang [6] which 
gives errors of lower than 10-5% for x = 20 

V(X) = 
x3 + 18x2 + 88x + 96 

x4 + 20x3 + 120x* + 240x + 120 
(3) 

We can define the function characteristic for a particular kinetic model in 
the following way 

W(cX) = 
d*a/dt* 

(dcu/dt)* 
(4) 

This function can serve as a master plot because it is independent of the 
heating rate and its values can easily be calculated from the experimental 
data. The general expression of w(a) can be obtained by combining eqns. 
(l), (2) and (4), i.e. 

1 
w(a) = fo 

[ 
f’(a) + 

XT(X) 

g(a) 1 (5) 

It is evident that this function is also dependent on the value of x. In order 
to show the sensitivity of w(a) to x we can discuss the problem for 
w( (Y) = 0. In this case it follows from eqn. (5) 

-f’(~,)g(~ln) = hl~(x,) (6) 
where the subscript m is related to the maximum of da/dt. The algebraic 
expressions for the f( (.w), f ‘(a) and g(a) functions are summarized in Table 1 
and the dependences ay,(x,) are plotted in Fig. 1. The arrows at the 
right-hand side of this figure show the limiting values az for infinite x,. 

It can be seen that a,(~,) functions decrease very rapidly for x, < 20 
and they cross at various points. Under these circumstances it is very 
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Fig. 1. The dependences of OL,(X,) for the kinetic models discussed. The limiting values of 
LX: are shown by arrows. Experimental point (0). 

difficult to draw any conclusions about the kinetic models without the 
precise knowledge of x,. The differences between several kinetic models 
become smaller for x, > 20, and for infinite x, it is not possible to 
distinguish between D2, D3 and An models. 

Identical results are obtained for a hyperbolic heating schedule, i.e. 
T = l/(t,, - bt), because it can be shown that this corresponds to linear 
heating when x is infinite, for which 

lim XT(X) = 1 (7) X’oo 

Equation (5) can be rewritten for hyperbolic heating to give 

(8) 

The master curves corresponding to eqn. (8) are plotted in Fig. 2. It is 
evident that it is not possible to distinguish between Dl and Rl mecha- 
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Fig. 2. The master curves w(a). Experimental data transformed by eqn. (4) .( 0). 

nisms. Similarly there is no difference between mechanisms D3 and R3. 
Equation (8) can be written for the An kinetic model in the form 

1 - ln(l - CX) 

W(a) = (1 - CI) - ln(1 - CX) 
(9 

which does not depend on the value of parameter n. Thus corresponding 
master curves are identical for this model, regardless of the value of the 
kinetic exponent n. 

Master plots based on the first derivative of QI 

Recently [4], the master 
been derived in the form 

equation based on the first derivative of (Y has 

00) 
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Fig. 3. The master curves y(a). Experimental data transformed by eqn. (10) (0). 

where T,,, and (da/dt),,, are the temperature and the rate respectively 
when (Y = 0.5. It can easily be shown [4], that for the function y(a) another 
expression exists, i.e. 

fb) * id4 yw = f(0.5) * g(o.5) (11) 

The master curves corresponding to eqn. (11) are plotted in Fig. 3. However, 
the results are very similar to those of the w( CX) function and again it is 
impossible to distinguish between certain mechanisms (as described above 
for w(a)). This conclusion is not surprising because eqns. (10) and (11) are 
equal only for hyperbolic heating or for infinite x in the case of a linear 
heating programme. Thus it seems that unless the activation energy is known 
a priori it is impossible to ascertain the reaction mechanism, even for a 
hyperbolic heating schedule. 

However, it has previously been demonstrated [7] that the activation 
energy of a solid state reaction can be determined from several non-isother- 
mal measurements whatever the reaction mechanism. If the value of the 
activation energy is known the kinetic model of the process can be found in 
the following way. We can define the function 

z(a) = (da’dt) 7r(x)T 
P (14 

and then from eqns. (1) and (2) we obtain 
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Fig. 4. The master curves z( cy). Experimental data transformed by eqn. (12) (0). 

The master plots corresponding to eqn. (13) are shown in Fig. 4. It can be 
seen that in this case all curves corresponding to all the models discussed are 
well separated. The master curves attain their maxima when the degree of 
conversion reaches its characteristic value. It can simply be shown that for 
the maximum of the z( CI) function a general condition exists of the form 

-f’(CIZ).g(CXZ) = 1 04) 

The values of LYE calculated from eqn. (14) are summarized in Table 1. All 
these properties of the z(a) functions are very useful for the determination 
of the kinetic model from non-isothermal experimental data. Thus by 
plotting the z(a) function calculated according to eqn. (12) and comparing 
with Fig. 4 we can determine easily and precisely the proper kinetic model. 

EXPERIMENTAL 

Magnesite from Navarra (Spain) was used for the experiment. This 
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Fig. 5. DTG curve of the decomposition of MgCO, in vacuum at a heating rate of 12 K 
min-‘. 

carbonate exhibits the following chemical composition: SiO,, 1.76%; Fe,O,, 
1.12%; Al,O,, 0.32%; CaO, 0.98%; MgO, 45.35%; loss of ignition, 50.50%. 

The thermogravimetric run was carried out in a vacuum of 0.13 Pa using a 
CAHN electrobalance model RG. The Stanton-Redcroft temperature con- 
troller held the temperature constant to within f 1 K. The mass of the 
sample and the heating rate were 11.1 mg and 12 K min-’ respectively. 

RESULTS AND DISCUSSION 

The DTG curve of the decomposition of MgCO, in vacuum [S] is shown 
in Fig. 5. It is supposed that the activation energy has a value E of 107 kJ 
mall’ which has been confirmed by isothermal experiments. The values of 
the z(a) function calculated using eqn. (12) are plotted in Fig. 4 (open 
circles) for our experimental data. It is clear that the experimental data fit 
the master curve of the R3 mechanism very well. This conclusion is in very 
good agreement with the results of the analysis of isothermal data [8]. 

As another very quick test of the applicability of this particular kinetic 
model we can refer to Fig. 1. Our experimental data are x, = 13.4 and 
cy 111 = 0.66. From a simple visual inspection (filled circle) of Fig. 1 it can be 
seen that these values correspond well to the R3 model. 
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The experimental data given in Fig. 5 were also transformed using eqns. 
(4) and (10) respectively to obtain w(a) and y( CX) functions. These character- 
istic dependences (open circles) are compared with their master plots in 
Figs. 2 and 3 respectively. The agreement between the master plots and the 
experimental data points is not so good as that obtained for the z( cz) 
function. 

Thus it can be concluded that the f(a) function cannot be ascertained 
from non-isothermal data obtained at only one heating rate unless the value 
of the activation energy is known. Nevertheless, the mechanism of the solid 
state process can easily be obtained by the simple method described above 
for a given value of activation energy. 
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